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Abstract. Neural networks promise automated prostate segmentation
for the development of precise and quantifiable image-based biomarkers in
modern personalized oncology. Before clinical translation, however, their
stability must be ensured. In this study, we train three-dimensional U-
shaped convolutional neural networks to segment prostate magnetic res-
onance imaging (MRI) scans and evaluate different loss formulations to
improve their performance. To evaluate generalizability and reproducibil-
ity of our networks, we compare their performance in a clinically acquired
test/re-test MRI data set of 26 prostate cancer patients that was previously
not seen by the networks. We find our networks to be generalizable with
good reproducibility with a mean Intersection over Union of 0.88. While
initial results are promising, anatomical accuracy remains to be evaluated
in larger, multi-center data sets. To facilitate clinical applicability, we
provide an easy to use toolbox online.

1 Introduction

Modern personalized oncology relies on precise and quantifiable data. Recent
advances in Magnetic Resonance Imaging (mri) have enabled the development
of image-based biomarkers that can be used for data-driven medicine [1]. Neu-
ral networks promise not only fast and reliable automated organ segmentation
to generate quantifiable imaging biomarkers, but also the standardization of di-
agnostic processes [2, 3, 4]. Prior to the routine clinical application of such
networks, however, their stability must be ensured on test/re-test data [5].
This study examines the effect of focal-loss cost scaling on a previously pub-
lished three-dimensional UNet for prostate segmentation [6, 7]. Prostate cancer
is the most common malignant tumor in men, arising in 70-75% from the pe-
ripheral zone (PZ). Reliable prostate segmentation can facilitate and accelerate
diagnosis, including the determination of prostate-specific antigen density, zonal
application of the PI-RADS v2.1 criteria and risk assessment, e.g., of invasive
growth [8, 9]. It may also serve urologists as a roadmap for targeted biopsies.
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Fig. 1: Zonal anatomy of the prostate. Shown is an axial view (left) at the base
of the prostate and a sagittal view (right) through the center (adapted from [8]).

To evaluate clinical generalizability and reproducibility, we compare the perfor-
mance of our UNet in an mri test/re-test data set previously not seen by the
network. To facilitate clinical transfer, our pipeline is available online 1.

2 Study data

With ethics committee approval, 26 prostate cancer patients (mean age 67.7 ±
4.9 years standard deviation) were enrolled in this study. Examinations were per-
formed on a clinical 3T mri scanner (MAGNETOM Skyra; Siemens Healthcare,
Erlangen, Germany). After sagittal and coronal high-resolution T2-weighted
(T2w) imaging of the prostate, an axial high-resolution T2w sequence (voxel
size 0.7 x 0.7 x 3 mm, TE/TR = 108/3350 ms, flip angle 160◦, GRAPPA accel-
eration factor R = 2) of the prostate was acquired, replanned, and re-acquired
to obtain a test/re-test data set.
The prostate is divided into four zones: transition zone (TZ), central zone (CZ),
peripheral zone (PZ), and anterior fibromuscular stroma (AFS) (1). For our ini-
tial training of zonal segmentation, we rely on the ProstateX dataset comprising
346 subjects [10] and the annotations provided by Meyer et al. [7], including 78
annotations for training and 20 for testing purposes. Meyer et al. [7] combine
the TZ and CZ to the central gland. During training, our networks only see the
Prostate X data set, so we study their stability in the above described clinical
test/re-test data set of 26 patients.

3 Computing the Region of Interest

Before we can fit a network to expert segmentation, we must locate the Region
of Interest (RoI), which later serves as network input. After resampling the
scan volumes to 0.5 x 0.5 x 3 mm, we compute the RoI’s bounding box by
using the intersection of at least two scans in axial as well as sagittal and/or

1https://github.com/Krebs-Busters/zone-segmentation
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Fig. 2: The X-Y, Y-Z bounding boxes on the left. The prostate is centred in the
extracted RoI.

coronal orientation. Modern scanners store image slices as volumes alongside a
displacement vector o ∈ R3,1 and a rotation matrix R ∈ R3,3. To compute the
RoI we translate the array indices from local into global coordinate systems and
back,

Rx+ o = g. (1)

The equation above is computed for limiting points of a unit box at the origin.
Our original inputs in x are the 3D-Tensor indices. The equation above yields
displaced and rotated lines g ∈ R3,1 in the device coordinate system. We find the
intersection via a combination of maximum and minimum operations. Assuming
the scans overlap, we compute the lower end of each box by choosing the largest
value of the minima along the three axes. Similarly, we find the upper end by
picking the smallest element from the maxima of the boxes for every axe. The
first two plots of Figure 2 illustrate the process. Using the lower and upper
bounds, we construct the bounding box of our RoI and transform it back to the
tensor-index coordinate system via,

R−1broi − o = xroi. (2)

With the inverse of the rotation matrix R−1. xroi ∈ R3 is a point on the bound-
ary of the local RoI-box we seek. We discard all but the axial T2w scans, figure 2
shows a sample RoI. Once the region of interest is computed, we train a three-
dimensional neural network as described by [7] to perform the zonal segmentation
of the prostate. To achieve the best possible fit, we additionally introduce a focal
loss [11] that, to our knowledge, has not previously been reported in the context
of zonal segmentation of the prostate.

4 Cost functions

Lin et al. [11] introduce a sigmoidal focal-loss formulation. Focal loss is a variant
of the cross entropy loss. The cross-entropy loss [12] serves as the starting
point. To emphasize rare, often misclassified classes, Lin et al. [11] include a



TZ PZ AFS

cost max µ± σ max µ± σ max µ± σ

focal-loss (ours) 0.92 0.905± 0.010 0.793 0.770± 0.017 0.534 0.396± 0.129
cross-entropy (ours) 0.92 0.901± 0.013 0.793 0.761± 0.029 0.417 0.327± 0.078

DSC-loss [7] 0.88 - 0.798 - - -
cross-entropy [14] 0.85 - 0.60 - - -

Table 1: Dice Similarity Coefficient (DSC)-test score comparison for our net-
works alongside results from the literature. We observe improved AFS segmen-
tation performance without performance loss in the PZ and central gland for the
focal loss term. Mean µ and standard deviation σ values are computed for four
runs using the seeds 1, 2, 3, 4.

scaling term into the formulation. This formulation works well when classes
are not mutually exclusive. Entries of the network output tensor y ∈ [0, 1] are
normalized by a sigmoidal function. In our case, however, prostate parts can
only ever be in a single zone. Consequently, we formulate a softmax version of
the focal-loss. Again, we start with the cross-entropy loss formulation for this
case [12]

Lmce(t,y) = −
N∑

n=1

K∑
k=1

tkn ln(ykn), (3)

and add the focal scaling [13],

Lsoft-fl(t,y) = −
N∑

n=1

K∑
k=1

(1− ykn)
γtkn ln(ykn). (4)

This formulation differs from [11]. In the following section, we will evaluate its
utility for our prostate segmentation problem.

5 Zonal segmentation of the Prostate-X data set

The AFS does not consist of glandular tissue, but primarily of fibrous and smooth
muscular components, leading to a relatively low signal intensity on T2w imag-
ing. In the apical half striated muscles blend into the gland and the muscle of
the pelvic diaphragm, while laterally and posteriorly the AFS thins to form the
fibrous prostate capsule, which renders its segmentation challenging [15]. This
section studies the effect of focal re-weighting on this problem. We choose to
set γ = 1.5, for all focal losses. Table 1 lists network accuracies. Detection of
the AFS significantly benefits from focal re-weighting of the cross entropy cost,
both subjectively as well as in terms of a higher mean Dice Similarity Coeffi-
cient (DSC). Figure 3 illustrates the validation accuracy during training, since
the sigmoidal formulations did not converge well, we omitted these from Table 5.
This result is intuitive since every voxel can only be part of a single class. The
softmax captures this setting better than the sigmoidal formulation.
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Fig. 3: Mean validation Intersection over Union (IoU) for training runs with
seeds 1,2,3,4. The softmax-focal loss formulation delivers slightly better mean
performance than unweighted softmax-cross-entropy on the ProstateX data.

Fig. 4: Segmentation performance of the UNet in a previously unseen test/re-
test prostate mri data set. Only subtle differences are notable. We observe
robustness despite the slight motion corruption in the scan on the right. Zones
are colored according to figure 1.

6 Clinical generalizability and reproduciblity

Generalizability and reproducibility are fundamental for clinical applicability.
To this end, we analyze the performance of our UNet using a series of mri test-
retest scans previously not seen by the network. Using the focal-loss trained
network with seed 1, we segment scan/re-scan image pairs and compute the
Intersection over Union (IoU) between every pair. Overall, we obtain a mean
IoU of 0.88 calculated over all image pairs in the dataset, indicating a significant
overlap of the test-retest-scan pair segmentations. Figure 4 illustrates the subtle
differences in a test/re-test scan pair. Patient movement creates the blur visible
on the right. Consequently, this is a difficult test-retest pair.

7 Conclusion

Focal-loss cost rescaling improved UNet-segmentation performance of the prostate,
i.e., the AFS without performance loss in the PZ or central gland. Our neural
network was generalizable to a previously unseen clinically acquired test/re-test
mri scan data set with good reproducibility. While initial results are promising,
anatomical accuracy remains to be evaluated in larger, multi-center data sets.
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